Archivo de la etiqueta: Broadcast

Introduction to Sony FS7 II

More than two years ago, I received information about a new camera that we would announce at NAB2014. Specs were amazing and the body… my first impression from the photos was “weird”. That curved rear part, with an extensible arm, was really “new”, especially compared to the box-shaped modular bodies existing at that time, like FS100, FS700, F5…
But then I arrived to our booth, searching for it. And the moment I held the PXW-FS7 in my shoulder and grabbed the grip, I understood everything. I simply was willing to shoot.
One year later, FS5 arrived. Again, a little revolution: modular yet stand-alone, also extermely powerful, with the chance to use any lens, as we could do with FS series and E-Mount Alpha series. Tiny, with a similar grip to FS7, but without that arm… and with one nice brainchild: that electronic variable ND filter. Originally, it allowed us to assign different shutter values to its 3 position, and play with its value with the body dial or, even better, the grip’s one.

And now, 2 years later than FS7 was announced, we are glad to see how an improved FS7 will be living in parallel with the original model.
Say hello to FS7 II. I did it in my YouTube channel:



As said, it was applied to the Super35 mm sensor in FS5, but, actually, it had been already used in PXW-X180 and X160. From my humble point of view, it’s fine to have it in a “news/ENG” handy model, but it is even better when used in a Large Format Sensor.
A LFS means, as you all know, basically a muche shallower depth of field.
A typical situation when shooting “reality” (documentaries, news…), as opposite to “fiction”, is that we don’t use to have the environment under our control, and that applies to light, too. So, imagine that you’re shooting in an indoor-to-outdoor situation: since light will probably be higher outdoors, we need to reduce it. A newbie like me would probably close iris. Or you can also adust exposure. But in both cases we are modifying the original picture aesthetics, as we’re increasing the DoF or changing the movie cadence, it’s “fluence”.
It’s very typical to use optical ND filters to avoid that aesthetics shift. But they use to be external (not controlled from camera body), and, obviously, one more parameter –and equipment- to bear in mind.
On FS5 and FS7 II Electronic Variable ND Filter we have 3 main modes:
1. Instead of the classical Clear / 1/4 / 1/16 / 1/64 filter wheel, now it is Clear / 1 / 2 / 3, meaning we can assign values as we want, from various shutter values. So, for instance, if you’ve been testing before the shoot and you realize that indoor it should be 1/8 but outdoors it matches with 1/32, you can assign those values to positions 1 and 2, making your shift much faster.
2. From any of those three positions (1, 2 or 3), if we switch the filter position to “Variable” instead of preset, we can adjust its shuttering value by a dial (from 1/4 to 1/128). Such dial can be the one in the camera body (also shared with Iris), or the grip’s one –which I prefer, personally-. Our creative chances are unique, thanks to that (imagine you can control surrounding light; you can modify DoF without light visible change.
3. The third mode is Auto mode: camcorder analyzes light approaching the sensor, and automacially adjusts ND filter so that we can have the same light level –in a certain limit, between 1/4 and 1/128. So, that indoor-to-outdoor travelling shouldn’t be a worrying factor any longer; you can keep the same DoF and the same shutter speed.


That invention is fine in concept, but how does it work?
Basically, it’s an LCD layer before the sensor. Light will have chaotic polarization when leaving the lens. Then, it’ll pass through a polarizer and a transparent electrode, an LCD layer, another electrode and another polarizing filter. The first polarizer “aligns” light so that it has a certain fixed polarization when leaving it –let’s say, horizontal polarization.


Depending on the voltage applied to the electrodes, liquid crystal mollecules will turn their position and will “twist light” (varying polarizing angle). Finally, a vertical –this is just an example- polarizing filter appears, and depending on such angle, light will be more or less capable to trespass that polarizer. Obviously, what camera (or we) actually controls is voltage applied to LC.

As you know, one of the main advantages we have been showing since years ago (actually, FS100 was the first professional camcorder to incorporate it) is the capability to use virtually ANY lens over the E-mount. This is mainly due to the short flange back distance, between sensor and top of the mount. Since such distance is really short (18mm), users can “build” their own lens, via adapter. Or you can convert your Sony camcorder into any mount; you can see it also from this perspective.
In the professional market belonging to broadcast and cinema, however, we received a lot of feedback about E-mount: swinging the lens is necessary to attach it to the camcorder, and that is sometimes a bit difficult, especially when big broadcast lenses are being used, or the lens is surrounded by rod bars, mattebox, follow-focus… In that case, a straight installation is preferred.
And that’s what we got with the new Lever Lock-type E-mount: a white dot in the lens needs to be put in front of another white dot in the camera mount. Then, a lock switch can be released, and a collar will embrace lens bottom. Basically, such mechanism is pretty similar to PL mount (in fact, it is actually a Positive Lock attachment).

To be honest, the first time I used it I felt it a bit more complicated than regular E-mount. But after getting used to it, I simply LOVE it.

There are several improvements from FS7 in FS7 II, but instead of having a different section for each one, let me share the same space for them all. A lot of feedback has been taken in mind for PXW-FS7M2 (the official reference).
Firstly, the grip arm: if you have worked with your own FS7, this was not a real issue, but when the same camcorder was used by different cameramen, it was very likely to need different arm lenghts. And for such adjustment, a couple of screws needed to be loosen and tightened; thus, a screwdriver needed to be on set –nothing really nice if you use to fly-. Now, a knob is replacing those screws, so it’s much easier to get a proper arm length, and it can be done without the need to leave the camcorder holding in your arms.
As you can see, there is also a second knob; the one used for the Arri rossette. Now, that knob can be totally detached and inserted in another whole (hidden when the arm is totally folded), allowing you to use FS7 II in a lower position, laying in your belly as you could do with FS5, which is much more typical in fictional footages than an eye-heighted shot (normally for news/ENG).

Oh, and by folding the arm towards the rear side, we can lay the camcorder in a table, not in “diagonal” layout  .

Also, a small but significant change can be found in the left side of the camcorder, close to the screen: instead of a circular rod bar for the LCD, now that bar is square-shaped. Some users, depending on the air humidity, tightening force, etc, could see in FS7 that LCD screen could “fold down” unintentionally, losing the horizontal position. Thanks to this square rod bar, and to the knobs for each adjustment, we can place the LCD screen in any position, strongly tightened in place. Also, if we are still willing to use 15mm rod bars, we can use it, because there are supplied rubber adaptors that convert 15mm circular holes into square ones.


There’s still another physical change in that part of the camera: in FS7, a couple of clamps needed to be attached to the rear part of the screen, to keep the eyepiece in place. Now, just the lower one is needed, as the upper one is simply a “clip” that we don’t need to tighten, but just to put in place. So, we can attach or detach the eyepiece with just one hand.

And that same way to attach/detach is applied to the new screen foldable hood that is supplied by default. FS7 II is a camcorder very likely to be found in outdoors shootings; that hood will allow us to correctly see the picture in the screen with lower reflections. Also, the small size when folded prevents us to carry the eyepiece just to put it open over the LCD.

In the card slots area a little improvement has been added: now, when the card is ejected, the part of it you can grab is 8 mm. Oh, by the way, talking about cards, what I strongly recommend is to use G or S series in order to get the best from the camcorder. That way, every codec, including 4K 10-bit 422 at 500/600Mbps can be registered.


Keeping in the left side of the FS7 II, and just a bit before the card slots, we can find the audio controls. In FS7, the audio cover would deploy horizontally, and some users, when not closing it perfectly, experienced the awful experience of breaking it when hitting from above. Now, even if anything drops and hits that cap, it opens twisting around a horizontal axis, so it will only –and presumably- open, but won’t break.


And, as a last improvement regarding physical aspects on FS7 II, there was a situation in FS7: if you simply connected wrongly the LCD bus and switched on the camera, you couldn’t know whether it was not working due to battery or any reason. Now, a green LED has been placed just above the power switch, allowing to easily observe if the camera is actually powered. Don’t worry about it: such LED is not very intense, so it won’t ruin your low-light footages.


First of all, let me confess that I don’t usually like or use tactile screens. Simply, I don’t get the idea of putting your fingers on your monitoring system. Especially after eating a hamburguer or applying sunscreen. In other words: I prefer by far BUTTONS. And especially those buttons that I don’t need to look at to locate or push.
As we had on most of Sony camcorders, there are assignable buttons. And, like in FS7 or FS5, in the camera body they are ring-shaped and with a little “extrusion” across the ring. This allows cameraman to easily find them just but slightly touching with his/her fingertips.
But in FS7 we had 3 assignable buttons in the grip (yes, button #6 is that one that took a while to find) and other 3 in the camera body, in its left panel.


Now, in FS7 II, we have 4 MORE, making a total of 10 assignable buttons.

In my case, I prefer to use S&Q for direct access to Super Slow Motion (without passing through the “normal” S&Q), but in button #2 I use to assign Auto ND function; yes, obviously, we can assign the same functions as in FS7 + the ones related to ND filter.

FS7 II’s sensor is exactly the same as F5, FS7 or FS5: a Super35 mm sensor with CMOS technology, very fast readout, and 4K resolution.
Color space, thus, keeps the same, but now the chance to record over BT.2020 has been added, additionally to the original S-Gamut3 and S-Gamut3.Cine.

As you perfectly know, this HDR sensor can maximize its huge dynamic range via S-Log2 and S-Log3 gamma curves.
Just for reference, the cause to use a S-Log curve is because we want to “adapt” all that big dynamic range into a limited output (voltaje or digital values). If a linear curve is applied, saturation can be reached in a short input range (for instance, in 709 gamma curve, despite it is not purely linear). In a S-Log transfer, up to 1300% dynamic range can be acquired, and while low lights keep linear-ish, high lights are compressed. The aesthetics we could see are like “flat” or even “overexposed”, but we could apply an “anti-Slog” curve to linearize signal and recover the whole dynamic range that was captured. In case we need a “natural” look in our monitors (either because we are not totally use to visualize S-Log materials, or because we want to evaluate the final result), we can apply a 1D or 3D LUT, even designed by us (e.g. via RAW Viewer).
Nice, but… what is that wide dynamic range useful for? Imagine a scene in which we have two “stories”: one of them happening in a room, with low lights. Another one is happening outside, and could be seen through the window. With a SDR camera (about 6 stops), we would need to “choose” between both stories: the one happening in low lights- with the window overexposed-, or the one outside –and the inside one would be with stick blacks-. Through a HDR camera, we can record BOTH stories; in postproduction, we can simply apply that mentioned LUT to recover both materials. Or, even, if you’re shooting outdoors, clouds won’t be just flat white, but all their grey tones can be recovered.
There’s also a very useful function in FS7 II and FS7: HiKey y LoKey allow us to use a SDR range (for instance, because we might be using SDR monitors, not HDR) in either high or low lights. Thanks to that, we can evaluate both ranges of the images even if the rest of the equipment is not totally HDR-ready.
And now let me give a personal tip: once we have used S-Log curves, we feel “relaxed” because we can recover all the info, even if it seems overexposed. Then, we get used to work with them, and suddenly we get into a low-light environment, and experience the surprise to see that our image is a bit noisy. OK, very “organic” or “filmic” noise… but noise. That’s because S-Log curve is defined by standard to work with a minimum ISO3200 which means that for lowest levels, a minimum gain is applied. It’s not a problem in your camera; it’s a matter of how S-Log is defined. So, that is my tip: use S-Log if you need it, which doesn’t necessarily mean “always”.

Slow-motion features keep the same as in FS7: up to 180fps in Full HD resolution in NTSC mode, and up to 240fps with RAW output.
In fact, that’s a good indicator when we want to know how a camera behaves with rolling-shutter derivated effects: having a super slow-motion module means that sensor can be read fast enough to include much more frames in the same time period. So, if that readout is fast, the time that exists between the first and the last line in a frame is also very short, and, thus, jelly and banding effects are minimum.

FS7 II and FS7 can record internally up to 422 colour sampling, 10-bit, 4K-resolution over a XAVC Intra codec. As you can imagine, such big quality requires an according bandwidth, which is 500Mbps at 50p and 600 at 60p.
In a broadcast/news environment, it is very likely to find MPEG-2 (“XDCAM”, despite that’s not the codec, but the product family) capable systems. Despite XAVC offers better quality at the same 50Mbps, it’s a reality that MPEG-2 is, as of today, the de-facto codec in broadcast stations. So, for those needs, in Full HD resolution there is also the chance to record MPEG-2 422 10-bit, and not only XAVC.

All those codecs can be registered over XQD cards in the internal recording. But in case we use XDCA-FS7 adapter, there’s also the capability to record over ProRes. And, of course, XDCA-FS7 allows us to output RAW data stream from FS7 II.
Some of you may wonder: if FS7 II/FS7’s BNC connector is 3G-SDI, which allows a maximum of 2K/60p quality, how could a 4K/60p/50p signal be outputted? Well, actually, 4K signal is not actually outputted but “transmitted” after a conversion into data. So, baseband video is not routed throught the SDI connector; that cable is just used as a transmission system for data.


Bear in mind this is actually FS7 in RAW configuration: XDCA-FS7, V-mount battery, and at the other side of BNC cable: HXR-IFR5, AXS-R5 and olivine battery. FS7 II would be similar

That is why we need a device at the end of the cable that is capable to DECODE such signal, not only to record it. And for that, there are actually 3 ways: HXR-IFR5 + AXS-R5 from Sony, Atomos devices or Convergent Design Odyssey7Q+. After that conversion from data to RAW signal (done in HXR-IFR5, for instance), signal can be directly recorded in RAW (in AXS-R5), or transcoded into another format (in Convergent Design’s or Atomos’ equipment).


It’s exactly the same configuration as we had on FS7: a couple of SDI outputs, RAW output via XDCA-FS7 (together with genlock, reference, timecode in/out, V-mount batteries support, DC input and output), two XLR inputs and MI shoe.


URX-P03D dual receiver installed in FS7 II via SMAD-P3D

That MI shoe (Multi-Interface) allows to connect, for example, a receiver from the UWP-D series. But, since September 2016, we have dual receivers available: an unique receiver to which we can connect two transmitters. That receiver would be connected to FS7 II via SMAD-P3D adapter. This solution is great for interviews, ENG or documentaries. There’s, obviously, an internal mic, which means a total of 5 inputs (2x via XLR, 2x via SMAD-P3D and 1x internal) that can be addressed to the 4 audio channels that FS7 II and FS7 can record.





Related to Wi-Fi, a dongle called IFU-WLM3 is supplied by default, allowing us to control the camera through Content Browser Mobile app. But, in order to make things easier, it’s not even necessary to log into camera’s SSID and to input its password; we can simply “touch” the FS7 II left part with our smartphone/tablet, and, if NFC is switched on, both devices will “start the conversation” via Wi-Fi (or the app dowload site for CBM will launch).

Also, there’s the chance to connect CBK-WA100, an external device that allows proxy recording and upload even through 4G/3G dongle.



When in a news environment, it’s not a strange situation being in front of a gate through which some VIP may come. Or, in a documentary, it’s a typical situation to be waiting for some animal to leave some hole or jump from a branch. With FS7 II, as with many other Sony XDCAM camcorders, a buffer is available, to allow us to recover up to the past 15 seconds, and continue the footage from the momento that REC button is pressed. This can be done, as said, with up to 15 seconds in MPEG-2 codec. So, you can simply “let things happen”, and the contents will be ready then.



In FS7 II and FS7, a total of 3 REC buttons can be found: one -silver- in camera body, another one in the handle, and a third one in the grip. On the other hand, we have two XQD card slots. So, we can have 3 different configuations for those cards:

  1. Simultaneous REC: both cards will have the same contents, whatever the REC button we use. Nice for backups, or for addressing one card for edition and another for colour grading, for example.
  2. Continuous REC: since XQD cards are not as affordable as, let’s say, SD cards, it’s worth maximizing its capacity. This recording mode allows us to keep recording in a second card when the first one has run out of space, without any frame loss.
  3. (The most interesting one, IMHO) Independent REC trigger: imagine you’re shooting a live concert, and you wish to have the whole act in one card, and each of the songs on a separate clip. You can command one card with one of those 3 buttons, and the other one from another button. That’s useful not only for avoiding losing some relevant highlights, but also in case you’re shooting in a multi-camera environment, and you need to synchronize all footages.



In case you’ve shot with the lens bundled in PXW-FS7K, called SELP28135G, you’ll have noticed that there’s some “tele” or “zoom” effect when recording: that lens is designed for a Full Frame sensor (as that of A7S/A7S II), and, thus, when a Super35 mm sensor is placed behind that lens, the capturing surface is smaller than light’s circle diameter, and we keep only the central part of the image.


Now, SELP18110G has been designed for Super35 and APS-C (Sony) sensor size, meaning that there will be no need to “convert”, and the lens will provide a proper light diameter to the imager.

SELP18110G is also faster in response: when using the lens rings, they directly act over the optical mechanism, with immediate response. As we’ve seen in many Sony camcorders, we can easily switch from manual to auto focus by simply moving forward/backwards the focus ring, which, btw, now includes a “knurled” ring proper for mattebox directly, without belt.


Its aperture is constant F4; despite it might seem a bit dark when in wide angle, having a constant aperture simplifies operation regarding focus. In a classic lens, when shifting from tele to wide angle position means more light coming into the sensor, and, thus, a correction needs to be done -normally, over the iris adjustment-, so DoF or shutter needs to be modified, which involves an aesthetic payload (as we explained for the ND filter). But with a constant F4, no correction is needed, and DoF and fluence will remain the same along the whole zoom ratio.



Despite Lever Lock-type E-mount involves a new way to attach lenses, all E-mount lenses (as of today, around 74) can be inserted before FS7 II. And, obviously, also lens adapters.

As distance between sensor and mount is small (remember: 18mm), each user can “build” his/her own lens via adapter. So, virtually ANY LENS CAN BE ATTACHED. And I say “any” because, even if FS7 II’s sensor would theoretically vignette when a narrower lens is used (e.g. a Super16 lens), a center scan mode can be applied to “crop” the signal and only read the central part. That could also be seen in A7S II, by the “APS-C mode”, reducing its FF size into an APS-C/S35.

So, not only high-grade PL lenses can be used, as well as “vintage” FD or newer EF lenses, but also S16 or even broadcast 2/3″. In case you want to “recover” that light that would be lost by using full frame lenses, there are some adapters that can “correct” that effect by closing lens circle via another lens inside the adapter ring. So, no correction factor needs to be applied, and up to 1-1.5 stops can be earned – that’s the Metabones Speedbooster, and I won’t start a discussion about having an additional lens between a high-quality lens and your sensor.



As for most of the interchangeable lens camcorders, two kits will be offered:

  • PXW-FS7M2: body only
  • PXW-FS7M2K: camera body + SELP18110G

In both cases, accessories are supplied: battery charger, AC/DC converter, BP-U30 battery pack, foldable hood, eyepiece, IFU-WLM3 Wi-Fi dongle…. You’ll only need to buy a XQD card to start shooting (remember to buy G or S series to be able to record in every codec).


Sorry for writing such a long article this time, but as you can see, there are both significant and subtle differences between FS7 II and FS7, and didn’t want to miss a lot of them when the camcorder finally reaches the market.


I really hope this was useful for you; a review video can also be found in my YouTube channel, and you can keep updated via my Twitter account, so see you there!










FS RAW upgrade for FS5 announced at NAB

Hi all again! Very exciting news these days…

Maybe you’ve just heard/read it in the typical NAB announcements or via social media ( ); the expected (and announced since the beginning) “FS RAW” upgrade for PXW-FS5 (“CBKZ-FS5RIF”) will be available soon. Very soon. So, let’s see what it means.



I’m sure some of you have heard, or, even better, have worked on NEX-FS700 and/or PXW-FS7. For you, this announcement will probably something “natural”, and nothing that I’ll explain here will be really new.

As you may know, through a 3G-SDI interface (the main output, together with HDMI, in FS5) the maximum picture format that can be transmitted is 1080/50p (or 60p). However, it a 4K resoution needs to be sent, we would need a minimum of 6G-SDI connector.

However, this announcement (as years/months ago with FS700 and FS7), means that a 4K RAW signal can be delivered through that BNC connector. So… how????

In NEX-FS700, a little piece of hardware upgraded needed to be installed. In PXW-FS7, a camera adaptor needs to be attached to the camera body, XDCA-FS7. This time, for PXW-FS5, we simply need a firmware upgrade that can be done by end-user (but not as “simple” as a regular FW upgrade).

But those three models share the same kind of communication: through that BNC connector. Instead of sending the video in baseband, such video signal is converted into data and then encoded (under Sony proprietary protocol) and sent in data stream into the receiver.


The first solution that existed for recording RAW from a FS700 was AXS-R5. However, R5 was a recorder that was mainly designed to be fitted in the rear part of PMW-F5 or PMW-F55. It receives signal from a multipin connector.

So, an intermediate hardware is needed: HXR-IFR5. This interface has a triple function:

  • physical connection (it “emulates”) the rear part of a F5/F55
  • operation over R5: in F5/F55 operation is done via camera body. Here we’re missing such interface, so a set of buttons is needed.
  • decoding FS RAW signal: as said, that data stream encoded under Sony protocol needs to be converted into “video signal”, so that R5 receives it through its multipin interface.

This was the first way to record RAW from FS700, and it can be also used for FS7 and FS5. The only problem for some customers in this case could be the price: HXR-IFR5 + AXS-R5 + olivine battery + AXS memory + AXS memory reader can cost the same price (more or less) as the whole FS7.


So, some third-parties appeared; they held conversations with us, so that they could get access to the FS RAW protocol. Their typical workflow is to capture the FS RAW data stream and then convert it into a more “light” codec (despite it can also be RAW). They usually work over HDD or SSD drives, and use to provide also a monitoring solution. Obviously, the price is also smaller: about 1/4-1/3 of Sony’s solution. As you may have guessed, I was talking about Convergent Design with their Odyssey7Q/7Q+ recorder and also Atomos Shogun.


Well, as you may expect from a camcorder that can reach up to 240 fps in Full HD, the FS RAW upgrade also improves the super slow-motion capabilities.

As you know, default super slomo feature in FS5 (and in FS7) works over a buffer. That’s why it is “cached”: about 8 seconds if shooting at 240 fps. Now, this “caché way” is only applied if we shoot 4K at 120 fps, in which we’ll have 4 seconds burst. That means that, if at 24p recording, we are shooting 120/24=5 times faster, which means that those 4 seconds are “time stretched” to 20 seconds. In 4K in RAW quality, not bad 😉

And regarding 240 fps, now there wouldn’t be time limitation if shooting in RAW; this means we can reach a “continuous” mode without caché.


According to my information, this upgrade will NOT be free of charge. Also, the procedure will be very similar to the one you should follow to convert your X70 into a 4K camcorder. Oh, and don’t forget you will need to update your FS5 into V2.00 (not available at the moment of publishing this entry) in order to be able to upgrade with CBKZ-FS5RIF.


Thanks for reading, and I really expect this little explanation is useful.


¿Cómo se actualiza a 4K ó MPEG-2 la cámara Sony PXW-X70?

Hola de nuevo a todos.

Como algunos sabréis, la PXW-X70 es una cámara que no sólo ofrece un sensor de una pulgada (es ligeramente superior a un Super16 mm), códec XAVC, salida por HD-SDI y HDMI, posibilidad de remotearla por WiFi… sino que, hace pocos días (esta entrada data de principios de Julio de 2015), se lanzó la actualización a la versión 2.00.

Actualización a Junio de 2016: Edito esta entrada para hacerla compatible con el último “upgrade” que se puede hacer, el CBKZ-SLMP, para poder grabar en MPEG-2. Este procedimiento es análogo para la PXW-FS5 y su actualización a RAW, que tiene la referencia CBKZ-FS5RIF. 


Esta actualización es gratuita (la tenéis en este enlace, que únicamente requiere estar registrado en la web de Sony: ), y permite transmitir en streaming y grabar en proxy.

Posiblemente cuando leáis esto incluso haya una versión de firmware más actualizada.

El procedimiento para actualizar es muy sencillo; básicamente, se descarga un archivo de actualización, se conecta la cámara por USB, y se siguen los pasos que se indican en el manual.

X70 upgrade into V2.00 - 13

Esta V2.00 también permite que, sobre ella, se pueda instalar la actualización para grabar en 4K.

Y es esta actualización la que, con toda honestidad, no es tan fácil de instalar.

En primer lugar, tened en cuenta que es una actualización de pago (si mal no recuerdo, 488 € + IVA), y se consigue a través de nuestros distribuidores (podéis ir al localizador de distribuidores oficiales de la web de Sony: ).

Lo primero que hay que tener en cuenta es que todo el proceso de actualización de la cámara nos puede llevar aproximadamente dos días. No, no es que la cámara esté realmente actualizándose todo ese tiempo, sino que, debido a la “logística”, habrá que esperar en uno de los pasos un correo que tarda aproximadamente ese tiempo. Por favor, tenedlo en cuenta, por si tenéis algún trabajo planeado.

En primer lugar, debemos registrarnos en una página web cuyo enlace es este: . Al abrirlo, si aún no estamos registrados, deberemos pulsar “User Registration”, en la parte inferior derecha:

Registro ECSite


A continuación, rellenamos los campos como en cualquier registro de este tipo, con nuestro email y la contraseña que deseemos:

Registro ECSite_2



Y, obviamente, pulsamos “Registration” para finalizar la solicitud de registro.

Ahora, nos queda esperar; este es el proceso que, como os comentaba, puede llevar hasta dos días, aunque tengo entendido que han reducido ese plazo. Importante: vigilad vuestra carpeta de spam (a mí, personalmente, se me colaron los tres correos en esa carpeta cuando lo hice con el procedimiento antiguo). Recibiréis un correo parecido a este (he eliminado parte de los datos):

Email confirmacion registro

Pulsad sobre el enlace que se adjunta para finalizar el registro, y volved a entrar a través del enlace con los datos del correo recibido:

Entrar a ECSite

Se os pedirá que metáis ciertos números correspondientes a los códigos que habéis recibido entre corchetes:

ECSite AccessCode


Ahora, en la lista de opciones de la izquierda, se seleccionaría “Install Key”

ECSite Accedido


, y se abrirá una pantalla en la que debemos meter el código que nos aparece en la “cartulina” de la opción CBKZ que hemos adquirido:

SW Purchase Key Notification

Purchase Key en ECSite

Al pulsar en “Search”, encontrará que esa clave se corresponde a una actualización para la PXW-X70:

Purchase Key sin desplegar

Desplegamos la “Purchase Key” pulsando sobre el símbolo “>” que aparece a su izquierda:

Purchase Key desplegado

Al pulsar “Install Key Issue”, aparece una ventana emergente en la que tenemos que introducir el identificador de nuestra cámara (lo encontramos en el menú “Option”, y tiene el formato “nombre de cámara-número”, como por ejemplo “X70-16101”),

Option ID

el nombre de usuario a imprimir (esto es sólo para tener un justificante con nuestra compra), y el número de actualizaciones que hemos adquirido (recomiendo ir haciendo una a una):

Purchase Key ventana emergente

Pulsamos “Install-Key Creation”, y, aunque podemos generar unos archivos de referencia en modo texto y PDF (“Install-Key(Text)” e “Install-Key(PDF)”), lo realmente importante es generar el archivo de instalación, que creamos al pulsar el botón “Install-File Output”.


Ahora ya tenemos el archivo de instalación; lo metemos en el directorio raíz de una tarjeta SD o MS (preferiblemente formateada previamente en la propia cámara, y sin ningún otro archivo incluido dentro de la tarjeta), metemos la tarjeta en la cámara, y entramos en el menú:


Una vez instalado (puede llevar varios minutos), la cámara nos invita a reiniciarla al pulsar la opción “OK” en la pantalla (mensaje: “Installed. Press OK to reboot”).

Así, ya tendríamos finalmente nuestra opción instalada en la cámara. 🙂



Como veis, los pasos son muy sencillos, pero hay muchos, y no todos dependen de nosotros. Por eso he creado esta pequeña guía; lo que vais a necesitar es, especialmente, paciencia, pero seguid los pasos uno a uno, que no tiene pérdida. 😉

Un atento saludo, y, como siempre, muchísimas gracias, camaradas.

HXR-NX100: announced at Broadcast Asia

Hi all!

Maybe some of you have been active this morning on social media, and have realized that we have just announced a new camcorder at Broadcast Asia event.


This new camcorder is named “HXR-NX100”. And it is undoubtfully a nice camcorder, but probably the main question out there is: “Another camcorder by Sony???”. And, yes, you are right if you are wondering that. But there are a few reasons to embrace this new announcement.

Firstly, let me remind you I am just “the technical guy”. Yes, I belong to marketing, and that could be seen as a handicap, but you can be sure I try to position myself much closer to the user than to the brand in most of the cases.

So, many of you may know about PXW-X70. A nice little camera, with a great (literally) sensor, and a top level codec (XAVC). It works really fine, and, due to its sensor resolution (20 Mp), I expected its low lights to be a bit “weak”, but when playing with it in dark environments, it is really, really solid when managing that kind of information. You can remotely operate it, so it turns it into the perfect camera for documentaries: with a couple of them in your backpack (no heavy weight), you can shoot a nice multi-camera production held by just one operator.

But, what about those cases in which such operator prefers to do an ENG job? Obviously, X70 is a light but powerful tool, but some users prefer, when operating a camera in a handheld way, to be capable to play with the classic 3 lens rings. Yes, you can do something similar on X70 (zoom on the hand grip, iris on the little knob on the front of the camera, and focus on the lens ring – when shooting with a 1″ sensor, bokeh effect is significant), but some users were telling us that using that sensor on a 3-rings lens would be a perfect combination not only for live events (ENG, interviews, sports, concerts) but also for fictional purposes in which DoF is a critical aesthetic tool. Even, we could drop some functions from X70, if we could work on such new model. If, for instance, you are a YouTuber, a student, a freelance, a wedding videographer… you will surely be interested on NX100, and you will miss nothing.


And there it is: HXR-NX100. Probably that was the gap we were missing during months: a high-level but basic price tool that suits almost every situation, in an entry and mid level.

[From now on, please consider that I haven’t had the model in my own hands, so I can just judge it according to the information I have, as well as my prior experiences with other models]

It will look very familiar for those of you that have already worked with any Sony model, but if you haven’t, you should know that operation in our camcorders uses to be very intuitive, and optimized for the operator (we bear in mind such a big quantity of feedback that sometimes it’s almost unmanageable 😛 ).


Let’s talk a bit about the specs. Yes, the boring thing. But we cannot skip them.

¿Sensor? What has been labeled like “the grand one” or “the big one” (with no… let’s say… hidden implications 😉 ), referring to its size in inches. From my POV, it’s the perfect balance between those people for which a Super35 or an APS-C sensor (like on a FS100 or an EA50, respectively) is “too big”, since it demands a constant focus operation, and those ones that claim that a 1/3″ sensor doesn’t allow them to play enought with the DoF. So, what am I referring to? That either if you are needing a “reality” look (let’s say news or sports) or a more “aesthetic” or “fictional” look, you can reach both with this camcorder, via the way you prefer: closing iris, moving the camera a bit further, playing with the ND filters…


… because, yes, it does have ND filters. So, good-bye to those situations in which you are shooting in a dark environment and, when going outside, you need to fastly close iris, increasing your DoF. Now, simply apply an ND filter, and keep your iris open. Nothing new, of course, but strange to be found in a camera ranged at this price.

But, Alvaro, if you have always recommended to use the same resolution in the sensor as we have in the outputs, why are you defending a 20 Mpx camera? Oh, nice to hear that question! Well, in fact, I keep saying the same: due to pixel size, I prefer the sensor resolution to be as maximum the same resolution as the highest output. Sorry? Yes, let me explain: if you are using a 4K-capable camera, I prefer sensor to be 4K/8.3Mpx, but no larger; that way, each pixel has its maximum area, so it can collect the maximum quantity of light possible. So, how could it be interesting to have a bigger resolution in the sensor? Obviously, we sacrifice pixel density (thus, dynamic range), but with the high sensor quality existing nowadays, that is affordable (unless we are thinking of latitude for cinema applications). On the other hand, we can use that bigger pixel density to analyze signal. And that analysis helps us to have other features available; in this case, the well-known Clear Image Zoom.

Yes, I have heard that before, but… how does it work? Actually, it’s really easy. In a classic Digital Zoom, the usual way to do it is through interpolation: if a value of “1” is found in a pixel, a value of “3” is in an adyacent pixel, and we want to “zoom in”, we simply use an average, so the result should be “2”. That could be called a “spatial interpolation” (similar concept to an intra-frame codec). But, according to not only the previous frames, but also a classifying algorhythm, that signal can be compared to hundreds of patters (let’s say not only “radial movement” or “panning”, but even some recognizable patters, like, let’s say, “face”, “sky”, “flowers”, “pavement”…), and then that prediction is processed together with the interpolating mechanism, so that the final result provides a significantly bigger quality when zooming in. Is it clearClear… Image Zoom. This algorhythm can convert the optical 12x zoom into a 24x, and, added to that, we can use a digital extender to reach a 48x zoom. You can take a look on a [low quality; sorry] video that I uploaded some months ago in my YouTube channel.


Another feature that some users will appreciate is the codecs available in NX100. I will skip DV recording for obvious reasons. But, added to that AVCHD 2.0 that allowed up to 50p in Full HD (it is “only” 28 Mbps), this time we can use the same last generation codec we have, for instance, on Alpha A7s, which is an implementation of XAVC codec. Bear in mind that, for recording on that XAVC-S codec, you’ll need to use at least a “Class 10” or higher SDXC card. For AVCHD, Memory Stick (Pro Duo, Pro-HG Duo, XC-HG Duo) or SD/SDHC (classes 4, 6 or 10) can also be used. Oh, and, of course, stereo audio is recorded in LPCM (in AVCHD, it can be also AC3).

About the way to record, apart from the typical “relay” or “continuous” recording (one of the cards runs out of capacity, so the clip continues on the other card, since the camcorder has double media slot), or the “simultaneous” or “backup” mode (same clips on both cards; for example, for security, or for using one of them to start editing, and the other one for colour grading), there is a third way to record, that we saw for the first time in NX3 ( in this video ), which allows us to shoot DIFFERENT contents in both cards, with each card commanded by a different REC trigger. Imagine you are recording a live concert; in one of the cards, the whole concert can be stored, while in the other one, you can shoot just the highliths or each song independently. Very useful for editing, or for avoiding loosing some interesting take.


I know this is getting boring (sorry for that, and for my poor English, btw), so I will just remind some other nice features, like the MI shoe (no external cables for UWP-D receiver or HVL-LBPC torch), the LowLux mode (highest sensitivity mode with an assignable button), picture profiles and up to 99 camera profiles (copy from 1 NX100 to another, or use the cam profile according to the actual situation), Intelligent Auto (optimal setting for a certain scene after evaluation), LanC remote control…


Mmmmmh… yes, but, what about SDI, WiFi…? Well, those are the features that, according to the price range, needed to be dropped from other models (for instance, X70). However, and this is also a personal opinion, in most of the situations in which this camcorder will be probably used, I woldn’t miss them (but, obviously, this is subjective).


So, after that revision of the technical specs, let’s wait to have this nice little camcorder in our hands (I’ll probably have a pre-sales version in a couple of weeks) in order to see which sensations are provided. Unfortunately, I am not a skilled user, so let’s wait especially for the reputed guys to do some review…

Thanks for reading!

Alvaro Ortiz

Product Specialist for Monitors and Entry-Level Camcorders

Sony Professional Solutions Europe

Twitter: @AlvaroOrtizSanz